
hf. J. Heal Moss Transfer. Vol. 35, No. 2, pp. 375-382, 1992 0017-9310/92$5.00+0.00 

Printed in Great Britain 0 1992 Pergamon Press plc 

A model for the extracted heat and the phase front 
position in solidification with boundary 

condition of the third kind 
G. C. J. BART and C. J. HOOGENDOORN 

Delft University of Technology, Applied Physics Department, P.O. Box 5046, 2600 GA Delft, 
The Netherlands 

(Received 13 August 1990) 

Abstract-In this paper an approximate analytical solution is given for the extracted heat and the phase 
front position as a function of time for a finite slab of phase change material with a surface heat transfer 
coefficient and a fixed melting point. It will be shown how, for an arbitrary Biot number, an approximate 
solution can be obtained from the solutions in the case Bi -+ 0 (homogeneous temperature in phase change 
material) and Bi + co (constant temperature boundary condition). The accuracy of the solution will be 

assessed by comparison with a numerical finite difference solution obtained by the enthalpy method. 

1. INTRODUCTION 

EXACT ANALYTICAL solutions are known for only a 
few phase change problems. One of the most useful 
and well-known exact solutions is the so-called Neu- 
mann solution of the Stefan problem. This is a solution 
for the melting or solidification of a semi-infinite slab 
with a constant temperature boundary condition. The 
phase change medium is characterized by a single 
transition point, equal density in both phases and 
other properties independent of temperature in the 
solid and liquid phases. Conduction is the only heat 
transfer mechanism that is taken into account. Besides 
this, approximate solutions for other geometries and 
boundary conditions have been found with the heat 
balance integral method, perturbation theory or a 
variational principle. These solution methods have 
been extensively applied in relatively simple cases with 
the phase change medium at transition temperature. 
A broad review of these methods can be found in both 
Viskanta [1] and Crank [2]. 

For the case of the solidification of a slab with 
an initially overheated liquid or the classical Stefan 
problem in a medium of finite extent, a solution based 
on the heat balance integral method and the time- 
dependent perturbation theory has been proposed by 
Charach and Zoglin [3]. Recently, Prud’homme and 
Hung Nguyen [4] gave singular perturbation solutions 
for slabs, cylinders and spheres with different bound- 
ary conditions. As they proposed the heat transfer in 
the liquid to be characterized by a constant heat trans- 
fer coefficient they only needed to solve the heat equa- 
tion in the solid part of the medium. Bart et al. [5] 
proposed a solution of the classical Stefan problem in 
a finite slab by a combination of the solutions pro- 
posed by Neumann for the semi-infinite domain. Their 
results are in good accordance with the solution of 
Charach and Zoglin [3]. 

In this paper we will extend the method given by 
Bart et al. [5] to handle a convective boundary 
condition. It will be shown that accurate results can 
be obtained for the extracted heat as a function of 
time. The phase front position is predicted less accu- 
rately. No solution is given for the temperature field. 
An advantage of the method presented here is that it 
can easily be generalized to cope with phase change 
materials with a transition range as shown by Bart 
and van der Laag [6]. 

Application of the method can be found in the 
description of, for example, a latent heat store or the 
casting of metals. 

2. DESCRIPTION OF THE PROBLEM 

Between the coordinates x = 0 and L (see Fig. l), 
we have a medium that is liquid for temperatures 
above Tf and solid if the temperature is below Tr. 
Further, it is supposed that each phase has its own 
constant properties. However, the density of the two 
phases is the same and we assume that no convection 
occurs in the liquid phase. The plane x = L has an 
adiabatic boundary condition and the plane x = 0 a 
boundary condition of the third kind that can be 
described using a constant heat transfer coefficient GI. 
The equation of thermal diffusion for the solid (s) and 
liquid (1) region has to be solved : 

8T a2T 
%=a&?. (1) 

Here, depending on the phase, T is chosen as T, or T, 
respectively. a, the thermal diffusivity of the respective 
range, is given by a, or a,. Furthermore, we have to 
account for the boundary conditions : 

x = 0, t > 0, a(T, - T,) = 2aqax (2) 
315 
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NOMENCLATURE 

a thermal diffusivity Greek symbols 
Bi Biot number u heat transfer coefficient 

CP specific heat Y ratio of thermal diffusivities 
Fo Fourier number r ratio of sensible heats 
k root of transcendental 1 thermal conductivity 

equation 5 solidification front position 
L length density 

4 integration variable : heat flux. 

Qr extracted heat 
r latent heat Subscripts 
Ste Stefan number f freezing 
t time 1 liquid 
T temperature S solid 
V volume W wall 
X length coordinate 0 initial 

Y integration limit. co infinity. 
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FIG. 1. Phase change material with transition point Tf at 
solidification front position 5 between the coordinates x = 0 
and L. T, is the initial temperature of the liquid (I), T, the 
temperature of the surrounding and T, represents a wall 

temperature. 

and 

x = L, t > 0, aTlax = 0. (3) 

Here also, depending on the phase, for wall tem- 
perature T,, thermal conductivity L and temperature 
T the values in the appropriate range should be taken. 

The initial condition is 

x > 0, t = 0, T, = To. (4) 

At the phase front position c we have additional con- 
ditions given by the continuity of temperature 

x = 5, t > 0, T, = T, = Tf (5) 

and balance of heat fluxes 

x = 5, t > 0, 
ar, aT, ag 

1,~ -1,~ = i-pat. (6) 

Here 1 is the thermal conductivity, p the density and 
r the latent heat (r > 0). This set of equations is valid 
as long as not all the material has solidified. After 
solidification we only have to deal with the diffusion 
in the solid. This is described by energy equation (1) 
with boundary conditions as given by equations (2) 
and (3). 

With a solution of equations (1) up to and including 
(6), the phase front position and temperature field as 
a function of time can easily be assessed. From this, 
other variables of interest can also be calculated, such 
as the heat flux at x = 0 or the extracted heat in a 
certain time interval. 

An exact analytical solution of this general problem 
does not exist. However, for a few special cases exact 
or approximate analytical expressions can be obtained 
for the relative extracted heat Qr and the phase front 
position 5 as a function of time. For application of 
the model in heat storage or casting problems, these 
are the most important quantities to know. In the next 
section we will give three different solutions for special 
cases. After that, with a combination of these solu- 
tions, we will give an approximate solution for the 
general problem. 

The description of the problem can be simplified by 
introducing the Stefan number 

Ste = cps (T, - T,)/r (7) 

and the sensible heat ratio 

rl = c,,(To - TdlqdTr - Tab (8) 

Further, the Fourier number is defined as 

Fo = a,t/L2 (9) 

the Biot number as 

Bi = uL/i, (10) 



and we will make use of the thermal diffusivity ratio 

Ysl = %/a,. (11) 
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where k is the root of the equation 

exp(-k’) v exp(-k*y,i) & -- 
k erf (k) Jr,, k erfc (k&4 

= G’ (13) 

An evaluation of this equation is given by Churchill 
and Evans [8]. From the solution of the temperature 
field in the solid region 

3. SPECIAL ANALYTICAL SOLUTIONS 

3.1. Solution with constant boundary temperature, 
Bi-+oo 

Carslaw and Jaeger (Section 11.2 of ref. [7]) found 
an exact solution for the case of a boundary condition 
of the first kind (Bi + co, T, = T,), the phase change 
medium being semi-infinite. This solution is known as 
the Neumann solution of the Stefan problem. With 
the help of this analytical solution Bart et al. [5] 
proposed an approximate analytical solution for a 
medium of finite extent with constant temperature 
boundary condition. 

In this approximate solution for short times the 
Neumann solution is followed. It is used up to the 
time when an amount of heat is extracted from 
the liquid phase equal to the initial heat present in the 
liquid in the finite domain. At that time the phase 
front position 5 is still within the region of x between 
0 and L. After this time, denoted by the dimensionless 
Fourier number Fo,, we can use the Neumann solution 
for the case where the liquid is initially at the solidi- 
fication temperature. With this change in solution 
regime the temperature field cannot be a continuous 
function of time, but with a time shift denoted by 
Fo,- Fo,, the extracted heat becomes a continuous 
function of time. This second Neumann solution is 
used up to the time when the phase change is 
completed, or 5 = L. This time is the solidification 
time and will be denoted by Fo3. After this time we 
only have to deal with conduction in the solid. The 
solution is then taken from the well-known solution 
for the cooling of a slab with constant temperature 
boundary condition. In this case the temperature field 
is also discontinuous in time, but here again we can 
make the extracted heat a continuous function of time. 

T,-T, erf (x/2LJFo) 

T,-T, erf (k) (14) 

the heat flux at the wall (x = 0) turns out to be 

w = _ UTr--TmJ 
L(z Fo) ‘I2 erf (k) ’ (15) 

Integrating this equation with respect to time and 
normalizing the result gives an expression for the 
extracted relative energy 

2JFo 

Qr=(l+~+l/Ste)erf(k)Jn’ 
(lo) 

The calculated values for k for the cases simulated 
numerically can be found in Table 1. We will use this 
short time solution up to time Fo , , when according 
to the Neumann solution all sensible heat is extracted 
from the fluid and thus the fluid temperature in our 
finite domain equals the transition temperature. The 
Neumann solution gives, for the temperature of the 
fluid T, in the semi-infinite region 

_ erf’c 6 Jysr/L JFo) TO - T, 

To--T, erfc (k&) ’ 
(17) 

The time Fo, is then calculated from 

s 
,:,, (To--T,)d4L= (1-2k@“,)(T,-7-f). 

“I 

(18) 

With use of the standard integral 

3.1.1. Short time solution. For short times we sup- 
pose the medium is semi-infinite and we can then 
follow the Neumann solution. To obey the boundary 
condition for x = L the geometry is extended to 
x = 2L with solidification taking place from both 
sides with the solution of the two semi-infinite regions 
added in the liquid region. This solution for the semi- 
infinite medium is valid as long as the penetration of 
the heat in the liquid has not yet reached the solidi- 
fication front coming from the other side. Or better 
stated, the heat content in the tail of the temperature 
profile that has passed the solidification front is neg- 
ligible. Then the position of the solidification front 
and the temperature profile in the solid will be the 
same as in the semi-infinite case. 

02 

erfc(q)dq=eXP>-y2)-yerfc(y) (19) 
n 

we get the explicit expression from which Fo , can be 
obtained 

L erfc (k,/y,,) = 1 exp (- k*y,,). 
JFo, Jn 

(20) 

3.1.2. intermediate time solution. For times 
Fo 3 Fo, , the solution is obtained from the Neumann 
solution in case the sensible heat effect in the fluid can 
be neglected. Stating q = 0 and using k,, instead of k 
in this case will turn equation (13) into 

According to the Neumann solution described by 
Carslaw and Jaeger [7], the thickness of the solidi- 
fication layer is given by 

Ste exp (- ki) = Jak, erf (k,). (21) 

In the same way as described before this leads to a 
relative extracted heat 

t/L = 2k(Fo) “* (12) 

1 ?Fo1/2. 
Qr = (l+l/Ste) erf(k,,) ./n (22) 

. I . -’ v .- 
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Table 1. Parameters used in the simulations for the case q = 1, y_, = 1 

Sle k erf k ko erf k, Fob, Fo, Fox 

0.1 0.18913 0.21090 0.22002 0.24431 0.52533 0.38828 5.30157 
1.0 0.37776 0.40682 0.62006 0.61946 0.36763 0.14007 0.87779 

10.0 0.46290 0.48730 1.25697 0.92454 0.31691 0.06185 0.41328 

This solution will be valid as long as 5 < L. The 
calculated results for k0 are also tabulated in Table 1. 
Equation (22) has to be modified somewhat, because 
now the initial condition at Fo = Fo, is given by the 
short time solution from Section 3.1.1. An extra term 
is added to account for the sensible heat effect of 
the liquid and along with it in the denominator the 
maximum extractable heat to which Qr is related is 
changed. As we are solving the heat equation we prefer 
the Qr vs time function to be continuous. That is why 
a time shift Fo, - Fo, is also needed. So from time 
Fo = Fo, onwards, the relative heat can be written as 

cc(T,.,-T,) = --pLc,%. (27) 

Or in dimensionless form 

-Bic,,/c,dFo = d(T,-T,)/(T,-T,). (28) 

Here, for the specific heat cP the appropriate value in 
the solid (c,) or liquid (cP,) should be used. For 
T, > Tf, the exact solution of this differential equa- 
tion is 

T,, - T, = (T, - T,) exp (- BiFo c,s/c,, ). (29) 

2 (Fo-Fo, +Fo,)“* 

( > 

This solution is valid up to time Fo,, where the liquid 
- 

Jn erf(k,) +’ will reach the phase change temperature (T,,,, = TJ 

Q,(Fo 2 Fo,) = 
(1 +q+ l/Ste) ’ 

with 

(23) BiFo4 c,Jc,l = ln ((To - Tm)/(Tr - r,)). (30) 

Time Fo, is obtained from equations (16) and (23) by After this time, during the phase change, the tem- 

setting Fo = Fo, With this time shift the sum of the perature of the phase change medium can be con- 

sensible heat extracted from the solid together with sidered as constant and equal to the transition tem- 

the latent heat extracted from the phase transition is perature. The extracted heat is the latent heat of the 

the same in both the short time and intermediate time phase transition and is used to move the phase front 

solution procedures at time Fo, From Fo , onwards position. In this case we have to solve 

the solidification front position is given by >r 

l/L = 2k,(Fo-Fo, +Fo2)‘“. 

Equation (23) can be used until time 
t/L = 1 or 

2k,,,‘(Fo3-Fo, +Fo,) = 1. 

(24) 
cr(T,- T,) = rp$. (31) 

Fo,, where Or in dimensionless form 

Biste=a(5/L> 
(25) aF0 . (32) 

3.1.3. Long time solution. From time Fo = Fob, Taking into account the initial condition that c/L = 0 

onwards, when all the liquid is solidified, the process at Fo,, we find as the solution of this equation 
is fully controlled by the diffusion in the solid and 
then the extracted heat can be approximated by the BiSte(Fo-Fo,) = r/L. (33) 

well-known long time solution : This solution is valid up to time Fo,, when the phase 

1 -Q,(Fo 2 FoJ 
front position reaches the adiabatic-wall r = L,br 

1 - Q,(Fo = 5’0,) 
= exp(-n’(Fo-Fo,)/4). (26) 

Fo, - Fo, = l/BiSte. (34) 

3.2. The solution for Bi -+ 0 
After Fo5 the exact solution for the temperature of 

For the limit Bi --f 0 the heat flow rate will be com- 
the solid is given by 

pletely determined by the external heat transfer co- 
efficient. In this case the finite thermal conduction of 

T,,--T, = (T,--T,)exp(-Bi(Fo-Fo,)). (35) 

the medium at each time will keep the temperature 
field within the material uniform and equal to the wall 

From the solution for the temperature the following 

temperature. Balancing the heat flux at the wall with 
equations for the relative extracted heat can easily be 
obtained : 

the change in heat content of the phase change 
material then yields for 0 < Fo < Fo4 
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If we want to know the time needed to extract an 
Qr = 

rlvll- TWMTO - Tr) ; 
(l+rl+l/Ste) 

(36) amount of heat Qr in the case of an arbitrary Biot 

for Fo, < Fo < Fo5 
number, then we have to calculate from equation 
(16), (23) or (26) and the procedure given in Section 
3.1 the value of (Fo)~~_ that corresponds to Qr and 
from equations (36) to (38) and the procedure given in 
Section 3.2 the value of (BiFo),,_, that corresponds 

and for Fo > Fo, to Qr. Then, applying equation (45) will produce the 

Q = v+Wte+(Tf-TWs)/(Tf-T,) 
Fo corresponding to Qr in this general case. 

r 
(1 +q+ l/Ste) 

(38) If we want to know the dimensionless time Fo cor- 
responding to the relative phase front position t/L in 

3.3. The solution for cP, = cPs = 0 and arbitrary Bi 
the case of an arbitrary Biot number then we first have 

If we suppose the specific heat in the liquid and 
to calculate the value of (Fo)~_~ from equation (12) 

solid is negligible then the temperature profile in the 
or (24) and the value of (BiFo),,, from equation 

solid will be a linear function with distance. The liquid 
(33). After application of equation (45) the Fourier 

temperature can then be set to T,. Now the problem 
number corresponding to t/L and for the arbitrary 
Biot number is found. 

can be described by the following two equations : first For a number of Biot values between 0.1 and 10 
the heat balance at the wall and for three different Stefan numbers 0.1, 1 .O and 

a(T, - T,) = MT,- TJ5 (39) 10.0 we have done this and compared the results with 
those obtained with a finite difference solution of the 

and second the heat balance at the phase front pos- 
ition 5 

problem. The finite difference numerical program 
could only cope with equal properties in the solid and 

&(Tr--T,J/5 = rpg. 
liquid phases, so ys, = 1 in these simulations. In order 

(40) to have a pronounced effect, if one exists, of the 
overheat, the sensible heat in the liquid has been 

In dimensionless form we obtain as a differential equa- chosen equal to that of the solid (9 = 1). The finite 
tion for 5 : difference numerical program is based on the enthalpy 

BiStedFo = (l+Bir/L)d</L. (41) 
method as described by Voller and Cross [9]. In this 
method the phase front position is not tracked 

After integration we obtain Fo as a function of the directly. It can be found afterwards by interpolation 
relative phase front position or the relative extracted in the temperature field. Two hundred grid points 
heat, because in this case the extracted heat Qr = t/L have been used to obtain a smooth solidification front 

Fo = QJBi Ste + Q:/2Ste. (42) 
position curve. 

The computing time of the FORTRAN code that 

For Bi -+ 0 we obtain has been used to calculate the approximate analytical 
solution is small. These calculations can be done on a 

(BiFo),, 0 = QJSte (43) microcomputer. 

and for Bi -+ CC 

(Fo)m + m = Qz/2Ste. (44) 4.2. Results 

We see that, in this special case, the solution for an The results for the extracted heat are presented 

arbitrary value of the Biot number for the relative in Fig. 2 and those for the phase front position in 

extracted heat or the relative phase front position, as Fig. 3. 

given in equation (42), can be obtained by an inter- As explained in Section 3.1 the approximate model 

polation between the solution for Bi + 0 and Bi + co for the case Bi + co supposes the extracted heat to be 

according to a continuous function of time. This assumption is the 
reason why the phase front position shows a dis- 

Fo = (B~Fo),,,~/B~+(Fo)~~+~. (45) continuity for Fo = Fo,. This discontinuity is most 
pronounced when k and k0 differ considerably as is 

4. THE GENERAL SOLUTION 
the case for large Stefan number and large initial 
overheat. As a result of our model we see that for the 

4.1. Solution procedure case Bi + co we have a good prediction of the relative 
To get a solution for the general problem as stated extracted heat for all three Ste and for the phase front 

in Section 2, with non-zero specific heats in the solid position that we have a good description for Ste = 0.1, 
and liquid regions and an arbitrary heat transfer a reasonable one for Ste = 1 .O and a rather poor one 
coefficient boundary condition, the result of equation for Ste = 10.0. This is not a particular drawback of 
(45), derived for a simplified case, will now be applied our model. To some extent all approximate models 
and combined with the results obtained for Bi -+ co for Stefan problems as mentioned in the Introduc- 
(Section 3.1) and Bi + 0 (Section 3.2). tion show such behaviour. For example, perturbation 
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FIG. 2. Relative extracted heat Qr as a function of the Fourier FIG. 3. Relative solidification front position e/L as a function 
number Fo with the Biot number as parameter. Numerical of the Fourier number i;o with the Biot number as parameter. 
calculations (. . . . . .) compared with the approximate ana- Numerical calculations (. . . . .) compared with the approxi- 
lytical solution (-). From left to right the Biot number mate analytical solution (-). From left to right the Biot 
has been chosen as co, 10, 1 and 0. I. The appropriate Ste is number has been chosen as to, 10,1 and 0.1. The appropriate 

indicated on the graph. Sze is indicated on the graph. 

methods using Sfe as the perturbation parameter will 
not converge when Ste > 1. 

For the limit Bi -+ 0 our model approaches the 
exact solution given in Section 3.2 for that case. The 
deviations that can be seen in the figures for Bi = 0.1 
are predominantly due to the accuracy of the finite 
difference model. This model becomes less accurate 
with more and greater time steps used. 

For intermediate Biot numbers we see deviations in 
the predicted relative extracted heat Q, that are all 
smaller than 0.02. This is a value that is satisfactory, 
because it is comparable or better than the accuracy 
of the parameters of the model when these have to be 
measured. 

In the prediction of the phase front position <IL, 
besides the effect of the discontinuity already discussed, 

we see a considerable deviation for the initial move- 
ment of the phase front for Bi = 10 and to a Iesser 
extent for Bi = 1. This effect becomes more severe 
for larger Ste. The existence of this discrepancy can 
also be noticed without the finite difference model 
(. . .), because the starting point of the curve is known 
exactly. When in the beginning there is only a tem- 
perature profile in the liquid, the time at which the 
wall temperature reaches Tf and solidification starts 
can be found from the exact solution that exists for the 
case of a constant heat transfer coefficient boundary 
condition and a medium without phase change. This 
is described in Section 3.10 of Carslaw and Jaeger [7]. 
In our case the time at which the soli~~~tion starts 
isfoundtobeFo = 0.~5915for3j = 10, Fo = 0.5120 
for Bi = 1 and Fo = 6.821 for 3i = 0.1. With some 
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interpolation between this starting point and the point tive extracted heat as a function of time and useful 
of inflection that is visible in the curve that has been information on the solidification front position. 
obtained with our approximate model it is possible to 
correct that curve. With this interpolation, use should 
be made of the fact that initially the t/L vs Fo curve 
shows a positive second derivative. 

4.3. Conclusion 
The separate model for the case Bi + co is deter- 

mined by the primary parameters Ste, q and ysi. In the 
approximate description use is made of the secondary 
parameters k, kO, Fo,, Fo2 and Fo,. The model gives 
a good description of the relative extracted heat for a 
wide range of Stefan numbers and for the sol- 
idification front position, a description that is accurate 
for Ste << 1 and less accurate for Ste >> 1. 

The model for the case Bi + 0 is determined by the 
parameters Ste, q and c,,/c,. With the calculation 
of (Bi FoJ and (Bi Fo5) we have all the parameters 
necessary for the description of the extracted heat and 
solidification front position. This solution is an exact 
solution. 

With the models for these two limiting cases and 
only one simple interpolation rule given by equation 
(45), a solution is obtained for an arbitrary Biot num- 
ber. It has been shown that this solution for the 
solidification of a slab of phase change material with 
a boundary condition of the third kind yields quite 
reliable results. It gives a good description of the rela- 

1. 

2. 

3. 

4. 

5. 

6. 

REFERENCES 

R. Viskanta, Phase-change heat transfer. In Solar Heat 
Storage : Latent Heat Materials (Edited by G. A. Lane), 
Chap. 5. CRC Press, Boca Raton, Florida (1983). 
J. Crank, Free and Mooing Boundary Problems. Clarendon 
Press, Oxford (1984). 
Ch. Charach and P. Zoglin, Solidification in a finite, 
initially overheated slab, Znt. J. Heat Mass Transfer 28, 
2261-2268 (1985). 
M. Prud’homme et T. Hung Nguyen, Solutions par 
perturbations singulieres pour un probleme de Stefan gen- 
Bralise, Znt. J. Heat Mass Transfer 32, 1501l1515 (1989). 
G. C. J. Bart, C. J. Hoogendoom and P. B. J. Schaareman, 
A characteristic dimensionless time in phase change prob- 
lems, Trans. ASME, J. Solar Energy Engng 108,3 10-3 15 
(1986). 
G. C. J. Bart and P. C. van der Laag, Modelling of some 
constant heat transfer coefficient phase change problems. 
In Heat Transfer 1990, Proc. Ninth Int. Heat Transfer 
Con& Jerusalem, Israel (Edited by G. Hetsroni), Vol. 4, 
pp. 247-253. Hemisphere, New York (1990). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids (2nd Edn), pp. 282-286. Clarendon Press, Oxford 
(1959). 
S. W. Churchill and L. B. Evans, Coefficients for cal- 
culation of freezing in a semi-infinite region, Trans. 
ASME, J. Heat Transfer 93C, 234-236 (1971). 
V. R. Voller and M. Cross, Applications of control vol- 
ume enthalpy methods in the solution of Stefan problems. 
In Computational Techniques in Heat Transfer (Edited by 
R. W. Lewis et al.), pp. 245-276. Pineridge Press, Swansea 
(1985). 

UN MODELE POUR LA CHALEUR EXTRAITE ET LA POSITION DU FRONT DE 
PHASE DANS LA SOLIDIFICATION AVEC UNE CONDITION AUX LIMITES DE 

TROISIEME ESPECE 

R&sum&On donne une solution analytique approchte pour la chaleur extraite et la position du front de 
phase en fonction du temps pour un mat&au en plaque finie avec un coefficient de transfert thermique a 
la surface et un point de fusion fixe. On montre comment, pour un nombre de Biot arbitraire, une solution 
approchte peut etre obtenue a partir du cas Bi + 0 (temperature homogtne dans le materiau a changement 
de phase) et Bi + 03 (condition limite de temperature constante). La precision de la solution peut Ctre 
estimbe en comparant avec une solution numtrique aux differences finies obtenue par la methode enthal- 

pique. 

EIN MODELL FUR DIE ABGEFUHRTE WARME UND DIE POSITION DER 
PHASENGRENZE BEI ERSTARRUNGSVORGANGEN MIT EINER 

RANDBEDINGUNG DER DRIl-fEN ART 

Znsammenfassung-In der vorliegenden Arbeit wird eine analytische Nlherungslosung fur die zeitliche 
Entwicklung der abgefiihrten W&me und der Position der Phasengrenze fiir den Erstarrungsvorgang in 
einer endlichen Platte angegeben. Dabei wird von einer Randbedingung der d&ten Art an der Oberflache 
und einem festen Schmelzpunkt ausgegangen. Es wird gezeigt, wie eine Lijsung fiir eine beliebige Biot-Zahl 
nlherungsweise aus Liisungen fur Bi --t 0 (homogene Temperaturverteilung im Phasenwechselmaterial) 
und Biiw (konstante Temperatur an der Oberflache) bestimnn werden kann. Die Bewertung der Genauigkeit 
der Liisung erfolgt tiber einen Vergleich mit einer Losung, die mittels Finite-Diierenzen-Verfahren mit der 

Enthalpie-Methode numerisch berechnet wurde. 
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MO@.JIb OTBOJJA TEI’IJIA M I-IOJIOlKEHWI UG’OHTA OA3OBOTO nEPEXOJ(A B 
l-IPOqECCE 3ATBEPaEBAHHR I-IPM I-PAHWIHMX YCJIOBHIIX 3-I-O PO&4 

hDIOTnrpl%-&ieTCK npH6nmcemoe aHanHTUYecKOe OnHCaHHe npoqecca OTBona Tenna H OnpeneneHHe 

nOJIOTeHWR f$pOHTa&3OBOrO nepeXOLlaB 3aBHCHMOCTH OTBpeMeHHJJJIK ILnaCTHHblXKOHeYHbIXpa3Me- 

pan c ~3nec~~bmf Ko*HweHToM TemonepeHoca Ha nosepxmcrw w noc~omnioii ~0slt0ii nnannetim 

nOKa3aH0, KaKHM 06pLUOMMOXHO nOJIy'fHTb npH6JIEi~eHHOe~IUeH~e~nnpOH3BOJIbHOrO WiCJIa LHO 

w3 pemeH&i B cnywe Bi + 0 (omiopoman TemepaTypa Malepmna npa #U~BOM nepexona) II Bi --) cc 
(rpamiwioe yCJlOBHe c nocTonHHoii TehmepaTypofi). TO'iHOCTb npe~oxceHHoro peIl.leHwn OUeHHBaeTcr 

IIOQXnCTBOM CpilBHeHHI C YHCneHHUM KOHe'iHO-pa3HOCTHblM PWIeHHeM, nO,,yqeHHbIM MeTOnOM 3HTa- 

nbnmi. 


